ANALYTIC HYPOELLIPTICITY FOR □b + c ON THE HEISENBERG GROUP: AN L 2 APPROACH
نویسنده
چکیده
In an interesting note, E.M. Stein observed some 20 years ago that while the Kohn Laplacian b on functions is neither locally solvable nor (analytic) hypoelliptic, the addition of a non-zero complex constant reversed these conclusions at least on the Heisenberg group, and Kwon reproved and generalized this result using the method of concatenations. Recently Hanges and Cordaro have studied this situation on the Heisenberg group in detail. Here we give a purely L proof of Stein’s result using the author’s now classical construction of (T)φ = φT p + . . . , where T is the ’missing direction’ on the Heisenberg group.
منابع مشابه
Analyticity for Singular Sums of Squares of Degenerate Vector Fields
Recently, J.J. Kohn in [6] proved hypoellipticity for (∗k) P = LL + L|z| L with L = ∂ ∂z + iz ∂ ∂t , i.e., −P = L ∗ L + (zL)zL, a singular sum of squares of complex vector fields on the complex Heisenberg group, an operator which exhibits a loss of k − 1 derivatives. Subsequently, in [4], M. Derridj and D. S. Tartakoff proved analytic hypoellipticity for this operator using rather different met...
متن کاملA Note on the Heat Kernel on the Heisenberg Group
Let ps be the convolution kernel of the operator e −sL (see [5, (1.10), (1.11)]). When s > 0, e−sL is the solution operator for the Heisenberg heat equation ∂su = −Lu and ps is called the heat kernel (see [6, (7.30), p. 71]. The goal of this note is to study the analytic continuation of the heat kernel ps. This is interesting from the point of view of the theory of analytic hypoellipticity (see...
متن کاملGlobal Analytic Hypoellipticity in the Presence of Symmetry
A linear partial differential operator, L, is said to be globally analytic hypoelliptic on some real analytic manifold M without boundary if, for any u ∈ D′(M) such that Lu ∈ C(M), one has u ∈ C(M). It is of some interest to determine under what circumstances this property holds, especially for sums of squares of vector fields satisfying the bracket hypothesis of Hörmander, and for related oper...
متن کاملSingular Sums of Squares of Degenerate Vector Fields
In [7], J. J. Kohn proved C∞ hypoellipticity with loss of k − 1 derivatives in Sobolev norms (and at least that loss in L∞) for the highly non-subelliptic singular sum of squares Pk = LL + L|z| L = −L ∗ L − (zL)zL with L = ∂ ∂z + iz ∂ ∂t . In this paper, we prove hypoellipticity with loss of k−1 m derivatives in Sobolev norms for the operator (0.1) P F m,k = L F mL F m + L F m |z| Lm with L F m...
متن کاملAnalytic Hypoellipticity in the Presence of Lower Order Terms
We consider a second order operator with analytic coefficients whose principal symbol vanishes exactly to order two on a symplectic real analytic manifold. We assume that the first (non degenerate) eigenvalue vanishes on a symplectic submanifold of the characteristic manifold. In the C∞ framework this situation would mean a loss of 3/2 derivatives (see [5]). We prove that this operator is analy...
متن کامل